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ABSTRACT

The strain energy of a spheroidal inclusion was evaluated
exactly using the Eshelby theory. Numerical results for an

oblate spheroid are presented in a parametric fomn in tenms of

the transforwation strain tensor. Using atomisitc transformation

mechanins, the transformation strain was determined for bcc-hcp
mrntensitic transformation in Ti and its alloys. The lattice

correspondence satisfied the Burgers relationship and the c/a-ratio

in the preduct phase was taken as 1.586. The habit plane was pre-

dicted on the basis of the strain energy minimization principle.
Results of the calculation indicate that the strain energy is

minimized when the morphology of hcp Ti martensite is a thin
disc-shaped inclusion lying on a plane close to (9 9 134 in
excellent agreement with experimental observations.

The present approach is discussed in detail and compared with

the crystallographic theory based on the invariant plane strain
hypothesis.

... . . .. . . . . . .... ..... . .". . . . . .. IIl~ . . .. . -l ... . .II . . . . .P 7. . . .



1. INT1WDJON

Because of the technological importance of ferrcus martensites,

various aspects of martensitic phase transformation have been investi-

gated extensively.(1,2) The phencmenrlogical crystallographic theory

of martensite formation was developed in the 1950's and is based on the

concept of the invariant habit plane. The theory resolves the total

shape deformation, P, into a pure strain that converts the parent into

the product lattice, P, a lattice invariant shear that produces two

undistorted planes, 9, and a rotation that ensures the invariant inter-

face plane, R. The basic hypothesis of the theory is that the total

shape deformation is an invariant plane strain. The whole of the volume

change of the transformation is produced as an expansion or contraction

normal to the habit plans as well as a small dilatation within the habit

plane in the Bowles-Mackenzie (B-M) forsulation. ( 3 ) The various formala-

ticns of the theory were presented by Bowles and Mackenzie,(3) Bullough
and Bilby,( 4 )and Wechsler et al. (5 ) and in a modified form by Ross and

Crocker,(6) et al. These formulations have been successful in

accounting for the crystallographic characteristics of many trensformations,

such as ferrous transformations with the 3 15 10)F habit plane and the

boo-hop LL.nior nti in Ti and Zr with the (34)B habit plane. (1)

However, a variety of martensites are difficult to recmile with the

theory. This group irludes ferrous martensites with the habit plane of

(225)F, (259}F, (142}F, etc. and Ti martensites with the (344)B habit

Plane.(197) It is also rvt clear from the theory which factors are

responsible for various rystaliopruphic charcteristics observed In

different alloys.
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It is well know that the elastic deformation in the particle of

new phase and in the parent lattice controls, to a large extent, a

martensitic transformation and the coherent stage of a phase trans-

formation. ( 8 ) In the above-mentiJoned crystallographic theory, it is

assumed that a thin plate matensite with the undistorted interfaces

satisfies the criterion of a strain energy minimum. This assumption

is valid in the cases of plate martensites. Chrstian'- ) considered

accomodation strains in the formation of a martensite plate which is an

oblate spheroid. The treatmnnt is based on the Eshelby theory of the

strain energy in a constrained transformation, ( 10 ) but is valid only

for a large diameter-to-thickness ratio. His result shows that the

strain energy per unit volume tends to zero with an Increasing

diameter-to-thikness ratio. It is clear that moe exact evaluations

of the strain energy via a generalized elasticity treatment are

necessary in order to develop a new theory that is based on the principle

of minimum free energy. Furthermore, the atcmistic mechanisms involving

dislocations, stacking faults and twins must be integrated into the new

theory so that only the probable modes of deformation are to be considered.

In this paper, we establish the correspondence between the crystal-

loeraphic and Eshelby theories and describe the calculation of the strain

energy of spheroidal inclusions using the Eshelby theory. The results

are combined with the consideration of atomistic mechanism In a detailed

analysis of martensitic transformation in Ti alloys. It is shcom that

the results of strain energy minimum determination cx~rlate well with

experimental observations on the habit plane. Other features of the pesent

approach is discussed.
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2. Theoretical Considerations

.2.1 The Eshelbv Theory

Eshelby(10) has obtained a general solution for the elastic state

of an ellipsoidal inclusion and the matrix, when the inclusion within

an isotropic elastic solid undergoes a change of shape and size, which

would be homogeneous, but for the contraint imposed by the matrix. Be-

cause of the presence of the matrix, internal stresses exist both inside

and outside the inclusin. In order to find the elastic field, Eshelby

uses a set of five imaginary operations, as shown in Fig. 1. These

are

(a) Cut around the inclusion which is to transfom and remove

it from, the matrix,

(b) Allow the transformation to proceed without the constraint;

tnamely, stress-free transformation defined by eiJ9

(c) Apply surface tracticns to restore the original shape of the

inclusion,

(d) Replace the inclusion into the hole in the matrix and rejoin the

material across the cut,

(e) Spring back to the self stress state by the release of the

surface tractions.

The net effect of these operations is essentially equivalent to the total

shape deformation, P, of the crystallographic theory; that is, Operation b

corresponds to the lattice deformation, P, and Operation c to the lattice

invariant shear, 9. Since the crystallographic theory deals with the

constrained condition, Operations a and d are omitted. fRzthgr the

assumption of a very thin plate shape leads to vanishing strain enrgy

so that the relaxation process of Operation e needs not be considered.
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On the other hand, only pure shear strain (or its combination) is

allowed for 9 in contrast to any homogeneous strain permissible in

Operations b and c. This leads to the main distinction between the two

approaches. The Eshelby theory provides no shape change after Operations

d and a limited shape change or rotation following Operation e, whereas

the total shape deformaticn, P is merely reduced to the state of an in-

variant plane strain in the crystallogrphic theory.

The total strain energy in matrix and inclusion, E, is obtained

by

E 4f al i e dv:- if I t
total vol. iJ 1d 2 13 e3

where a.I is the stress in the inclusion, and VI is the volume of the13

inclusion, and the sumation of repeated indices is implied. In the

I.case of an ellipsoidal inclusion, a.. in it is uniform and is given by
1)case C mn e(2

, I=13 Cij kL(Sk~mm e -kI ) (2

where the C are the elastic stiffness and the Skn are the coefficients

relating the transformation strain e. and the constrained strain ec by

e c = S e t (3)

While the evaluation of E is cumbersome, the solution to the elasticity

problem of transformtion exists in principle. Thus, the runaining tasks

are to obtain suitable e i for a specific transformation mechanism and to

establish a strain energy and free energy mininun condition(s) which depends

strongly on geomtry.
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2.2 The Strain Energy of Spheroidal Inclusions

Eshelby described the general solution for S in terms ofSkIn
elliptic intergrals, from which E can be obtained. To date, however,

E's for only few special cases have been evaluated. While the Eshelby

theory is valid for general ellipsoids, we shall treat only spheroidal

inclusions. This greatly simplifies the calculation without sacrificing
the applicability to phase transformation problems. It is also assumed

that the elastic constants of the inclusion are identical to those of the

matrix and that only one inclusion is present in an infinite media.

This section presents the solutions of E's for several simple cases

and a general solution for an oblate spheroidal inclusion. Consider a

spheroidal inclusion, the major axes of uhich coincide with the coordinate

axes; namely

(xl/a)2 + (x2/b)2 + (x3/c)
2 = 1 (4)

Two of the constants are identical, e.g., a = c. The aspect ratio k is

defined as k = b/a = b/c for this case. Fig. 2 shows such an inclusion

with k < 1 (an oblate spheroid). In the expressions below, Poisson's ratio

is always taken to be 1/3.

Case 1.

When the only nonzero components of e. are e 2 = e2 l, the strain

energy E1 is given by

El = alp(elt)Vi, V = 4.7r abc (5)

where a1 is a constant that depends on the orientation and the aspect

ratio of the inclusion and p is the shear modulus. a1 can be expressed

exactly in terms of elliptic integrals, but approximate expressions for
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are listed in Table I. The range of k where these are valid to with-

in 5% of the exact values is also given on the basis of a comparison

with exact calculations.

Case 2.

t tWhen all the components of eij except e2 2 vanish, the strain energy

E2 is given by

2 2 i(e 22 ) V1 • (6)

The approximate expressions for a2 are tabulated in Table I. E1 and E2

have no interaction term so that the sum of the two gives the total strain

energy correctly.

Case 3.
t

When all the elements of e. are nonzero, the strain energy E3 is
given by a.I  t

gie ebj V1/2. When an oblate, spheroidal inclusion with a = c > b

exists in the matrix, the strain energy is given by

2
1t I ee 3 a + a(et + et

E3  1 3 VI i e3) e1 33 1 e22

+ (e 2 ) + a5 [(e t 2 )2 + (e 2 l + a6 ( ) (7)

where the numerical values of coefficients a1 through a6 are plotted

against aspect ratio k(= b/a) in Fig. 3. For oblate, spheroids of

different configurations, e.g., a = b > c or a < b = c, E3 is obtained

tby interchange of the indices of eij.
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2.3 The Pres-nt Theory--An Outline

The main objective of this study is to combine the atomistic

mechanism of martensitic transformation with the generalized Eshelby

treatment. The present theory consists of the following steps:

i) Determine the transformation strain (et.) based on the lattice

correspondence and lattice parameters of the parent and product

phase as well as on the probable mode of the e..1J

(ii) Evaluate the total strain energy of a spheroidal inclusion and

the matrix as a function of the shape and orientation of the

inclusion using the Eshelby tensor S btained from et.
ijk, obaie frm 3.

(iii) Determine the strain energy minimum conditions and the habit

orientations. The minimum free energy condition can be deduced

by including the interfacial energy term.
t t

Although no restriction is placed on e j, generally ei. is decomposed

into one or two atomic shear mechanisms and dilatation terms. It is

assumed that both the inclusion and matrix are isotropic and homogeneous.

In this paper, we describe a specific application of the present theory

to martensitic transformation in Ti alloys. Details of the calculation are

presented in the following sections.

2.4 The Strain Energy Calculation

When the major axes of a spheroidal inclusion are parallel to the

coordinate axes, E can be evaluated by the procedures in Section 2.2,

once e.. and the inclusion geometry are known. However, these orientations

are not necessarily the minimu= energy configuration. In order to determine



9

E for a spheroidal inclusion of arbitrary orientation, the coordinate

axes are transformed to coincide the major axes of the inclusion. This

t
requires the siiultaneous transformation of eij into the new coordinate

system, but enables the subsequent use of the procedures in Section 2.2.
t

When ei1 in the original coordinate system is given, the rotation

of the coordinate by angle e about the x 3 axis, as shown in Fig. 4,

results in a new strain tensor,

(cose -sine e e 1 e 3  cos6 sinO 0

(etj)= (sine cosO 0 el 2 e2 2 e2 3 ) -sinO cos6 0 (8)

0o o 1 3 e 23 e33 / 0 0 1

Since the inclusion is spheroidal, another rotation by angle about one

of the new coordinate axes, e.g., the ' axis, produces the desired re-

orientation effect and enables the evaluation of E. However, most of the

components of transformation strain in the doubly rotated coordinate

system are nonzero and, therefore, the most general formula for E must

be used. After the two rotation operations, a new transformation strain

tensor is given by

(1 0 0 1 0 0
(et (0,c = o sin* (et.) 0 cos* sin*cos sn) (9)

o csiji Co* -sin* c04

3. Bcc to hcp Martensitic Transformation

The transformation of high temperature bcc phase of Ti and Zr alloys

during quenching is martensitic and results in at least four structures,

including hcp, fcc, orthorhombic and fcc orthorhombic. (11) The hcp

martensite is most commn and occurs in Ti, Zr, Ti-Mn alloys, Zr-Nb alloys
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and others. In pure metals and other dilute alloys, the lath martensite

forms, wihereas the plate martensite occurs with increasing solute content.

The habit plane is typically (334 )B or (8 9 1 2)B. The orientation relation-

ship of the plate martensite to the matrix has been established to be that

due to Burgers,(12) i.e.,

(011)B//(0001) H' [ll]B//[i120]H .

The experimental orientation relations in Ti and Zr also are close to to

the Burgers relationship.

The atomic movements for this transformation can be accomplished by

shearing on (011)B along [l[1]B and a dilation along [211]B as shown in

Fig. 5. The stacking of atoms on (011 )B is identical on every other layer

of (011)B and the illustrated atom movements result in the correct atomic

arrangement and stacking sequence of (0001)H . However, the atoms on the

middle layer must be moved as well. This is the so-called atomic shuffle,

and is ignored in the present theory. This atomistic mechanism was first

proposed by Burgers and satisfies the Burgers orientation relationship.(12)

When the nearest neighbor distance remains unchanged, an ideal hcp lattice

is produced by the atomic movements and the c/a-ratio is 1.633. In the

subsequent discussions, we shall always refer to the directions (lI1]B,

[MU]B and [011]B as X,, x2 , and x3 axes, respectively (cf. Fig. 2). These

correspond to the direction of shear, the normal to the plane of shear and

the normal to the plane containing all the atomic movements, respectively.

In terms of this coordinate system, the transfozation strain for the above

atomic movements is given by
(0 .088 0

e8j .088 -.081 0 (10)

0 0 0 •

/1*



Since the c/a-ratio of Ti martensite may be approximated by that of pure

Ti, 1.586, additional dilatational strain components must be considered.

Assuming that the interplanar spacing of (0li) B remains unchanged, the

transformation strain for this case beccmes
t (0.030 0.088 0

e 3 0.088 -0.051 0 (1U)K0  0 )

The ratio of lattice parameters of the product and parent lattices,

alH/aB, is equal to 0.892 in this case, wh.tich is slightly smaller than an

experimentally observed value of 0.899. The transformation strain of

Eq. (lU) compares to the one for zirconium obtained by Kelly and Groves,(13)

which is given in the present coordinate system as

0.(1033 0.094 0
ej 0094 -0.033 0 J(12)

0 0 0.02/

t tIn addition to e the uniform rotation W j accompanies the trans-

formation. In the present case, it is given by

088 0 (13)

0 0 0

Thesumofetj and wjis the net distortion tduring the transformation.

Note that an atomistic mechanim of phase "tinsf on defime. Bj where-

t tas only the ei tam of B is considered in the Eshelby thoory.

Hi l t II ..... . . . .. ... i i i . .. . II I
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4. Results

4.1 Simple Cases

t.
When e. is given by Eq. (10) and the coordinate system of Fig. 2

is used, the strain energy is Oivided into the shear nomponent El, and

the dilatational component E2. Using the exact expressions, E1 and E2

have been evaluated and are shown as a function of k in Figs. 6 and

7, respectively. The orientation of an oblate spheroid is identified

by the normal to the broad face, e.g., (2l1)-disc, whereas that of a

prolate spheroid by the long axis, e.g., [110]-needle. Figure 6 shows

that the values of El are identical for the (Oli)- and (l)-discs and

for the [I]- and [111-needles. 1E is the lowest for these orientations

for disc-like inclusions having small k values, and increases with increasing

k up to k - 2, after which E decreases slightly. The (011)-disc has the

highest E,, but El for the [011] needles is the lowest among the needles.

Figure 7 shows the similar result for E2 . The lowest value is obtained

for the (1i) disc at vanishing k. Among needle-like inclusions, the

[Iii] and [011] orientations had the lowest values of E2. E2 either

decreased or increased with raising k for a given orientation. This is

in contrast to the strain energy due to dilatation as calculated by

Nabaro (14) and showni here by a dashed line. The latter exhibits a

maxinum for the spherical shape and a minimium for the thin discs.

The total strain energy, E = E1 + E2, is plotted against k in

Fig. 8. The lowest energy configuration corresponds to a thin oblate

spheroid with [II] normal to the broad face, or the C711)-disc. The

second lowest energy configuration is the [011)-needle. The total strain

energy for the [11]-disc continues to decrease with decreasing k, hut that

for the [011J-needle approaches the asymptotic value at k > S.

Wile a suitable selection of paranuters is difficult, the effect

of the interface eneray contribution, E. can be assessed to a limited

degree. Assuming that the volume of an inclusion is S x 10 2 ams, the

interface energy 7 = 20 erg/cn, and 0 x 2 x 1011 dyn/cm . E. was evaluated
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as a functicn of k. The total free energy, &= E + Es' is shown in

Fig. 9. For this small inclusion size, the minium of FT exists at

k = 0.37 for the (2II)-disc.

4.2 The Minh=uu Strain Energy Configurations

When an oblate spheroid with the broad face normal of [i] (the

x2 axis) is rotated about [0111 (the x3 axis) as sho in Fig. 4 the

strain energy of the spheroid varies with the angle or rotation 0 and

has a two-fold rotational symmetry as shown in Figs. 10 and 11. In both

cases, several curves corresponding to different values of k are shown.

Figure 10 was obtianed using the transformation strain of Eq. (10), and

Fig. 11 using that of Eq. (11), respectively.

Figure 10 represents the strain energy of a spheroidal inclusicn

transforming to an hcp lattice with the ideal c/a-ratio. The difference

between the maximum and rinium values in t tends to vanish with k approach-

ing unity. The minor peak at e = 1500 is mich smaller than the peak at

e = 550 . The mininim value of strain energ, fLn' and the oorrespoing

value of 0 are summarized in Table II. Also shown in the table are the

ranges of 8 (AMA) within ttich E differs less than 1% of the strain energy
t

for a spherial inclusion with the identical eij. The strain enexV

vanishes at e = 00 or 180* and 1150 for k = 0. Whenk is raised to 0.1,

the mininim value of the strain energy increases and two strain energy

minima exist at e = 118 and 176.50. At k z 0.4 and 0.8, only one broad

minimum is found centering at 8 = 1470, and E is nrly the mam within

* 150. Obviously, n angular dependence exists for the spherical inclusion,

k =1.
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TABLE II

Strain EwW Minim

k Ein/UVl e (degrees) t A+ A* (degrees)

0 0 115, 180 (or O) 2 4

Eq. (10) 0.1 3.16 x 10-3  18, 176.5 3 5

0 8.05 x 10"3  147 16 8

0.8 ii.9 x 10- 3  147 15 15

0 0 9, 106 2 4

Eq. (U) 0.1 3.05 x 10- 3  8, 106.5 2 4

0.4 7.64 x 10- 3  4, lii 6 7

0.8 9.68 x 10-3  -20, 120 50 25

I| 1[. ..
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When the transformtion strain [Eq. (11)] corresponding to the

c/a-ratio of 1.586 in the product lattice is used, the angular depen-

dence of the strain energy shamw in Fig. 11 was obtained. For the k

values less than unity, two strain energy minima always exist, and the

minor peak at 0 = 1500 is moe prominent than in the previous case.

As listed in Table II, the minimum strain energy orientations shifted

by 9 to 370 between the corresponding values determined using the two

et
13"

The values of E on a single curve in Figs. 10 and 11 are

identical to each other. The variations of Ei with k are shown in

Fig. 12. Below k - 0.1, the values of %a n differ only slightly, but

the two curves diverge with increasing k. It is also clear that

tfor a given k is lower when eij of Eq. (11) is employd to prowae the

corract c/a-raio for titanium than whentej. of Eq. (10) is used for the

calculatio.

Results of the strain energy claculations for a doubly rotated in-

clusion are summarized in Figs. 13-15. For presentation of volmninous

data, the values of strain energy are normalized by the a=ximm strain

tenergy (E for a given eij and k. The magnitude of E is indicated

by intergers 1, 2, 3, .... 9, which corTespcnd to (0.10 1 0.01) EMX

(0.2 * 0.01) Ex, (0.3 ± 0.01) =x, .... (0.0 1 0.01) E..., r ec-

tiveliy. The locations corespondiing to (1.0 +- 001) . are indicated

by asterik (*) marks, ile that of Em is given by a plus (+) uark.

Figs. 13 and 14 show the positions of various levels of E as a function

of e and , which are taken at 50 intervals. In tem, of the standard

....
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stereographic projection, e corresponds to the longitude and 4 to the

latitude; i.e., 4 0 indicates the equator and * - 900, the North

and South poles of a Wulff net. Fig. 13 presents the mapping of E for

the case when the e -of Eq. (10) is used. The values of k,

and Emin/PVI are also given, and k is zero for Fig. 13a and is 0.1

for Fig. 13b, respectively. Similar mappings for the e.. of Eq. (11)13

with k = 0, 0.1, 0.4 and 0.8, respectively, are shown in Figs. 14a

through 14d. Mome detailed mappings are shown in Figs. 15a and 15b,

which present the normalized values of E for the range of

-100 : e £ 200 and 1*1 ±100 at 10 intervals. The magnitude of E is

given by an integer between 0 and 1000, where the latter corresponds to

the E value at e = -100 and 4 = + 100.

From Figs. 13 and 14, it can be seen that the strain energy minima

appear only at the locations predicted in Figs. 10 and 11 with * = 0.

However, the low energy orientation spreads over a range of 0 and

from the mininum energy orientation. This is best illustrated in

Figs. 15a and b. Emi n is located at 0 = 90 and * = 0, but within the

region of i0 u -t 20 ad A* = 1 40, the value of E increases over Emin

less than 1% of E of a sphere with the identical e . and VI . The

corresponding ranges of AO and A# for other values of k and et a
t

listed in Table II. For the two choices of e.j employed, the low

energy orientation for thin discs (k : 0.1) is located over a wider

range of # than that of e.
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5. Discuss ion

5.1 Effects of Ibtationa1 Oomponents

t .(10)

When the transforation strain ei. is given, Eshelby showed

that the unifom rotation - - u -.) in the inclusion is

written as

= 8 ijkT (15)

The only non-zero components of 1ijk) ae "1212, "2323 , "313 in a

coordinatte m whose axes coincide the pincipal axes of the

ellipsoidal inclusion. These are g iven in ters of elliptic int s

by, e.g. ,

'!212 = -n2112 =: (Ib> Ia)/8w "(5

Since the rotational oomnts of the transformation disttrion must

be sustted in order to apply the Eshelby theoy, the uniform rotation

in the inclushn from the original lattice, wIj o is tie ol

I= c t (17)23 = ui j  -  W j " 16

ThsrttJinal term must be considered in co ing th results of the

previous section to the crystallographic orientations detamndb

exprhent.

In borth the eiT empl.oyed in the above calculations of E. h ol

c2 " c1 2 t R1 12 et (17)
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The angle of rotation 03 about x3 axis beonms

-1 (1803 = tan-i (-2) " (18)

The numerical results are given in Table III, which shows that

the rotational correction amunts to only 1.050 for k = 0.1, and

vanishes for k = 0.

TABLE III

tRtational Corrections (for e12 0.088)

k 11212 ( 2  *3 (degrees)

0 0.5000 0.0 0.0

0.1 0.3956 -1.837 x 10 1.05

0.4 0.1912 -5.436 x 10 - 2 3.11

0.8 0.0458 -7.994 x 1072 4.57

5.2 Habit Planes and Shape Deformation

The minimum strain energy configuration of a spheroidal inclusion

cowesponds to the nrst likely geometry of the new phase, when the

interface energy contribution to the nucleation process can be ignored.

If the interface energy contributes significantly, its effect must be

evaluated as was done in Section 4.1 However, the orientation depen-

dence of the interface energy is generally unknown. If the interface

energy is assumed to be independent of orientation, the most favored
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orientation of the new phase is essentially governed by the strain

energy except for the fact that an optimum value of the aspect ratio

exists where the sum of the strain energy and interface energy contri-

butions is minimized.

Considering the -transformation strain of Eq. (11) that corresponds

to the c/a-ratio of 1.586 for the product phase, the strain energy

minimum exists, when the broad face of the spheroidal inclusion (k = 0)

is parallel to (9 9 13) B . When the aspect ratio is increased to 0.1, the

minimum strain energy orietation is shifted by 40 to (9 9 14 )B including

the effect of 3 These orientations are shown in Fig. 16a together with

the ranges of orientations where E increases over Emi n less than 1% of
T

E of a sphere with identical e.. and VI . These ranges are shown by

a hatched area (k = 0) and by a shaded area (k = 0), respectively. The

present result of (9 9 13) B habit plane is almost identical to experi-

mentally determined habit planes obtained by Newkirk and Geisler ( 1 5 )

and by Liu. (16) The observed habit plane orientations are indicated

in Fig. 16b by a filled triangle [the (8 8 11 )B orientation] and by a

hatched area, respectively. The range of observed habit plane orientations

shown by a shaded area is due to Gaunt and Christian, ( 1 7 ) whereas a double

circle represents the result of Williams et al. [the (8 9 
12)B orientation] (18 )

and a filled square that of van Ginneken, ( 1 9 ) [the (569) B orientation].

All the observed habit plane orientations are within a few degrees of

the predicted low energy regions, indicating an excellent agreemnt betwen

theory and experiment. It is also significant that the predicted orienta-

tions of low strain energy are not confined to a narrow zone. This is

again in accord with experiment, since it has been recognized that the

observed scatter of habit planes is beyond the limit of experimental

error.
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The predicted habit plane of the Bowles-Mackenzie analysis for

pure titanium is (8 9 12)B(20) and agrees with the observed one reported

by Williams et al. (18) However, the agreement hinges upon a suitable

choice of the adjustable dilatation parameter, which amounts to 0.7%. The

lattice invariant shear plane in the above analysis is {10i}H.  Wins

on {101iH in Ti martensite have been indeed observed by transmission

electron microscopy, but their thickness is of such magnitude that
(11)

it is difficult to interpret them as the lattice invariant shear.

The Bowles-Mackenzie prediction of the habit plane is rather close to

the predicted low energy orientations of the present analysis. This is

perhaps not surprising since it is expected that the invariant plane

strain condition postulated by the Bowles-Mackenzie analysis should

approximate the strain energy minimum condition.

TThe total shape distortion in the new phase, OiT , is given by the sum

of e?. and ,1. in the present analysis. For the above case where ij of
1J 1]

Eq. (11) is used, 0 T becomes

0 0.088 0

ij 0088 -0.036 (20a)

0 0 0

for the case of k = 0 and

0.005 0.056 0

T . 0.092 -0.037 01i3 (20b)

0 0 0

for the case of k 0.1.
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The sum of 8.T and an identity matrix corresponds to the total shape
1J

deformation r in the crystallographic theory. As a comparison, 6.T
1J

obtained frn the analysis on pure Ti by Bowles and Mackenzie (20) is

given in the same coordinate system by

-0.1075 -0.0618 0.0709\

( 0.0550 0.0268 -0.0388) (21)

-0.0658 0.0405 0.0394

It is clear that 8iT in the Bowles-Mackenzie analysis is not optimized

Tfor the strain energy minimum, as the strain components of BiT are al-

most universally greater than those of ec . in the present analysis.1)
A comparison of the two 8ij's indicates that, although the net dilatation

T T2 + 63) differs only slightly, a large contraction along the

[IlJ]B and a substantial expansion along the [011]B are present in the

8T for the Bowles-Mackenzie analysis [Eq. (21)]. The corresponding

dilatation parameters ii the present analysis are zero. The origin of

such a difference can be traced to the processes of lattice trensformation

in the crystallographic theory, where the invariant plane strain condition

is acccmplished by adjusting the dilatational strain components. This

approach is in a sharp contrast to the present one where the transformation

strain is chosen by minimizing atomic movements involved. It is also

evident that the dislocation concept of shear trensformation is completely

absent in the lattice transformation stage of the crystallogreaphic theory.

It is invoked only during the lattice invariant shearing. This is why it

is so difficult to reconcile the crystallographic theory with the atcmistic
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or dislocation concept of martensitic transformation. The former

achieves the lattice transformation via pure strain (e.g., the Bain

distortion), whereas the latter contends the major changes to be due to

the motion of transformation dislocations. In the present theory, et•
ij

arises from the atomistic concept, which is therefore an integgral part

of the theory.

5.3 Needle- and Lath-Type Precipitates of a-Ti

When a concentrated solution of Ti with Mo, V and other so-called

8-stabilizers is solution-treated and aged in a a + 8 phase region, needle-

and lath-type precipitates of c-Ti are found in the c-Ti matrix. The long

axis of these precipitates is aligned along <II0>B, and the Burgers rela-

tionship is satisfied in most of the instances investigated. (11) When

the aging was performed at relatively low teneratures (430-4801C for

a Ti-18Mo alloy and 480-5400C for Beta-III Ti alloy), Rosales (21 ) also

noted that the alloy partitioning considerably lags behind the 8 to a

transformation and suggested a shear transformation mechanism. Since the

lattice correspondence is identical, the present analysis also applies to

the a-precipitation. The results presented in Section 4.1 indicate that,

while a disc-shaped inclusion has the lowest strain energy, a needle-

shaped inclusion along <110>B are the preferred geometry. It is not known

what causes the needle- and lath-type precipitates to be most stable, but

it is naturally expected that the diffusion of solute atoms, the nature of

nucleation sites such as grain boundaries, the structure of a-$ phase

boundaries and precipitate growth mechanism have as much influence as the

strain energy. The k-dependence of E as shown in Figs. 6-9, however,
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presents one possible explanation. If the nuclei of a-precipitates

have semispherical geamtry as proposed by Rosales, ( 2 1 ) the growth

of <l0B-needles is preferred over that of <112>B-discs according to

the present results (cf. Fig. 8). This is due to a higher value of

-dE/dk for the needle geometry in comparison to that for the disc

geometry when k is close to unity; that is, the rate of reduction of E

is greater for the growth of <l0>B-needles.

5.4 General Discussion

The theory described in this paper represents a significant de-

parture from the crystallographic theory or from the interface dislocation

models. (22,23) It combines the atomistic transformation mechanism based

on dislocation movement and the crystallographic features of trensforma-

tion through the suitable selection of the transformation strain tensor.

The theory can be extended to othermartensitic transformations, some of

which are being investigated by the present authors.

The present theory can be refined by considering the elastic constants

of an inclusion, which differ from those of the matrix. This refinenent

can be done within the framewrk of the Eshelby theory. ( 10 ) The next

extension of the theory will involve the consideration of elastic aniso-

tropy. The general theory for anisotropic inclusion problems has been

developed by Kinoshita and Mra. (24) Although a few specific solutions

for a spheroidal inclusion have been reduced to line integrals, ( 2 5 ) these

are not immediately applicable to martensitic transformation problems.

This is due to the symmetry requirement for the elastic constants. Only

the spheroidal inclusions whose major axes coincide with the cube axes can

be treated by the solutions available.
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An entirely different approach to the transformation problem has

been developed by Khaehaturyan. ( 8) The theory utilizes the conputation

of elastic strain energy in the reciprocal space. A general solution is

obtained for an inclusion problem in the anisotropic elasticity and a

specific solution is given for a tetragonal dilatation in the cubic

symmetry. A similar approach has been successful in the analysis of

the omega transformation in Ti and Zr alloys. (26,27) However, the

application of this theory to martensitic transformation problems

requires a substantial effort in the future.

6. Conclusions

1. The total strain energy in matrix and a spheroidal inclusion

is determined by using the Eshelby theory. Approximate formulae and a

parametric expression for E are obtained by evaluating elliptic integrals.

Numerical results for an oblate spheroid are included for the most general

form of the transformation strain, ei.t

2. The atomistic transformation mechanism is combined with the

Eshelby theory to provide a new approach to the analysis of martensitic

transformation. The correspondence and distinctions between this new

theory and the phenomenological crystallographic theory are clarified.

t3. Specific eit for the bcc-to-hcp transformation in Ti and its

alloys is obtained. The habit plane is predicted on the basis of the

strain energy (and interface energy) minimization principle. The results

are in excellent agreement with experiment.

-A.. ..... ... ...................
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FIGURE CAPTIONS

Fig. 1 Schematic representation of the Eshelby theory ( 1 0 ) and the
Cla)

corresponding processes in the crystallographic theory.

Fig. 2 Coordinate axes employed and an oblate spheroid with the broad

face M211)B .

Fig. 3 Strain energy coefficients for an oblate spheroidal inclusion.

Fig. 4 The rotation of the coordinate axes about the x3 axis.

Fig. 5 Atomic arrangements on {110}B, {110}B after shearing and (0001) H

Burgers relationship is maintained in the atomic movement.

Fig. 6 Strain energy El due to a shear component el 2 against k.
t 

Fig. 7 Strain energy E due to a dilatation component e2 2 against k.
2 2

tFig. 8 Total strain energy E against k~e j of Eq. (10) was used and E is

expressed in terms of e 2 .

Fig. 9 The sum of E and the interfacial energy, FT,against k.

Fig. 10 The variation of E due to rotation about the x3 axis, using e

of Eq. (10). k values are given in the figure, and e = 0

corresponds to [11]-disc and e = 900 to [I1l]-disc.

Fig. 11 The variation of E due to rotation about the x3 axis, using et

of Eq. (11).

Fig. 12 The k-dependerne of Emin . el. used is indicated.
t

Fig. 13 The strain energy mapping with respect to 8 and *. e.. is given

by Eq. (10). Eax locations are given by (*) and Ein by (+).

(a) k = 0 (b) k = 0.1.

Fig. 14 The strain energy mapping using e - of Eq. (11). (a) k = 0,

(b) k = 0.1 (c) k = 0.4 (d) k = 0.8.

Fig. 15 Details of Figs. 14a and b, in the vicinity of 0 = 0.

Fig. 16 (a) Habit planes predicted by the present theory

(b) Experimentally determined habit planes.
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Fig. 3 Strain energy coefficients for an oblate spheoidal inclusion.
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Fig. 4 The rotation of the coordinate axes about the x 3 axis.



wo 33 1

CJ

00

0
0



34

zI

U4)

L U L

N0

LUU
LU La

I-,

C Ct



35

- -9

aN o
L'U

'U 0 b

4 4-
zz

ILI

ca
(00

00+

CC

d



36

CO)D
I' '

I, _Y I

0 C)

Cn 0

0

ro CN

S0

04-

OD

0



37

(11l) (011) 1.5 ET= E + ES

- 1.4<1>

-- 1. S

(211) DISCS 12 :EDE

1.0 V 5x 10"22rn 3

-t - 20 erg/cm _

p - 2 x 1011 dyn/cm2

0.9
II I I

0.1 0.5 1 5 10

ASPECT RATIO (k)

Fig. 9 The sum of E and the interfacial energy, ET,against k.
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Fig. 16 (a) Habit planes predicted by the present theory
(b) IEpwbmwftafy detemined habit planes.
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